KELDESIGN 

Reed's Math IdeasPolychromatic and tuplechromatic Ramsey Theory I have been working on a generalization of Ramsey Theory. The concept is very simple for those who already know a little about Ramsey Theory. Rather than limit the research to sets having monochrome subsets with a given property, the generalization allows the subsets to be colored with specific groupings of colors. Check out the images made in working with typechromatic Ramsey numbers: tuplechromatic Ramsey Witnesses. I wrote a paper on the subject: http://www.keldesign.com/math/TCRamsey/TupleChromaticRamsey.pdf. In the paper, I attempt to make a mathematical definition for polychromatic and tuplechromatic Ramsey numbers and polychromatic and tuplechromatic Van der Waerden numbers. This is not so much a new theory, as it is an interesting variant of existing Ramsey Theory. In any case, I believe that the generalization provides many new areas of research. Many of the conjectures for existing Ramseytype problems can have poly and tuplechromatic counterparts. One thing that is very appealing about tuplechromatic Ramseytype numbers is that they tend to be smaller then their classical Ramseytype counterparts. This makes it more feasible to use bruteforce to discover many of these numbers. Also, I am sure that many of the existing techniques for finding new bounds on Ramseytype numbers will work well on poly/tuplechromatic Ramseytype numbers. I wrote two programs for finding tuplechromatic (tc) Ramsey and Van der Waerden numbers. Technically, the tc Ramsey program is only used to discover witnesses (lower bounds), whereas the tc Van der Waersen program can test all possibilities and produce an actual tc Van der Waerden number. The programs are found at: http://www.keldesign.com/math/TCRamsey/Code/find_min_comlete.zip, and http://www.keldesign.com/math/TCRamsey/Code/find_vdw.zip. They are not elegantly written. I wrote my own Vector class to expose the arrays as public. I know that this is wrong, but it improved the programs' speed significantly. If you have any trouble compiling or running these programs, please send me an email (math..at..keldesign.com). Collatz, Fibonacci and Pascal The following two examples are based on the concept of a Collatz sequence. You can find more information on Collatz sequences on Wikipedia: Collatz conjecture. The first example is of a combination of the concepts of the Fibonacci sequence and the concept of Collatz sequences: HalfFibonacci. This sequence is further described in The Database of Integer Sequences. The second example is a combination of the concepts of Pascal's Triangle and Collatz Sequences. Check out my paper on CollatzPascal triangles here: CollatzPascal. Mathematical Tricks Summing digits trickThis trick is fun to do with someone who likes to do arithmetic. It doesn't take that much effort and it can amaze an audience. There are endless variations to this trick, but you need to understand a little modular arithmetic to make them up yourself.
VariationJust to show you that another variation is easy to concoct, here is another:
